Syntheses, Structures and Solution Dynamics of Anionic 5-Coordinate Pt(II) Complexes with Halide

Seichi Okeya,* Masato Hashimoto, Takahito Matsuo,† Kimiko Yamanaka,† Tetsuya Sumino,† Hiroshi Hashimoto,††
Nobuko Kanehisa,†† and Yasushi Kai*††

Department of Material Science and Chemistry, Faculty of Systems Engineering, Wakayama University, Sakaedani, Wakayama 640-8510

†Faculty of Education, Wakayama University, Sakaedani, Wakayama 640-8510

††Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Salia, Osak

(Received February 2, 1998; CL-980074)

Five-coordinate anionic complexes, $[Pt(hfac)_2X]^-$ (X = Cl, Br, I), were prepared by reaction of $[Pt(hfac)_2]$ and $[PPh_4]X$ in CH_2Cl_2 . A distorted square pyramidal structure was revealed by the X-ray analysis. The variable-temperature 1H and ^{19}F NMR spectra of these complexes were explained by two independent dynamic motions in solution, which were considered good models for the ligand exchange and *cis-trans* isomerization reactions.

The five-coordinate d⁸ metal complex¹ is important as an intermediate in the associative ligand substitution and isomerization reactions of four-coordinate square planar complex. [M(hfac)₂] (M = Pd, Pt, hfac = hexafluoroacetylacetonate) reacts with tertiary phosphine(L) to afford a distorted square pyramidal 5-coordinate complex, [M(hfac)₂L], in which the phosphine ligand is in the basal plane. ^{2,3} Two kinds of twist mechanism have been proposed to account for their dynamic behavior in CDCl₃.³ Here we describe some new anionic 5-coordinate Pt(II) halide complexes.

A CH2Cl2 solution of [PPh4]Cl was added to a CH2Cl2 solution containing one equivalent of [Pt(hfac)2]. Diethyl ether and n-pentane were added to the resulting mixture, and it was kept in a refrigerator to allow the deposition of red crystals of [PPh₄][Pt(hfac)₂Cl] 1a (yield; 58%).⁴ [PPh₄][Pt(hfac)₂X] (1b: X = Br, 1c: X = I) were also isolated in a similar fashion as red crystals (yield; 77% for 1b and 71% for 1c). A distorted square pyramidal structure with the halide ligand in the basal plane was determined by single crystal X-ray analysis (for 1c in Figure 1).⁵ Selected bond lengths are listed in Table 1. The apical oxygen donor atom(O4) has a weak bonding interaction with the metal because the Pt1-O4 distances are 2.9 Å. The position of O4 deviates moderately from the regular square pyramid (< O3-Pt-O4 are 75~76°). The Pt atom is almost on the mean basal plane. In solution, complex 1a rearranged gradually to 4-coordinate [Pt(hfac)(hfac-O)Cl] 2a, in which the apical oxygen was freed from a coordination site.6 When one equivalent of halide reacted with complex 1 or 2, [Pt(hfac)X₂]-3 was formed.⁷ Moreover, when more than two equivalents of halide were added to the solution of 1, a salt of $[PtX_4]^2$ or $[Pt(\mu$ - $X)X_2|_2^2$ was precipitated. Thus complexes 1 and 2 are intermediates in the substitution reaction of hfac by halide ligands. The variable-temperature ¹H and ¹⁹F NMR (Figure 2) of 1 were recorded. At sufficiently low temperatures two singlets of hfac-CH in ¹H NMR and four singlets of CF₃ in ¹⁹F NMR were observed. At elevated temperatures these signals broadened and sometimes coalesced. This dynamic behavior is accounted for by two independent intramolecular processes; these proceed via trigonal bipyramidal transition states (Scheme 1).3 The rate of hfac exchange between basal/basal and apical/basal positions

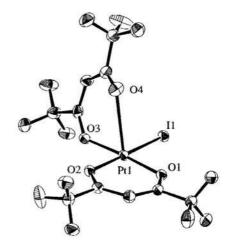


Figure 1. ORTEP drawing of 1c (PPh4+ is omitted).

Table 1. Selected bond lengths (Å).

244-4	1b	1c
Pt1-O1	1.995(5)	1.984(6)
Pt1-O2	2.023(3)	2.032(7)
Pt1-O3	2.019(5)	2.008(7)
Pt1-O4	2.951(5)	2.942(8)
Pt1-X1	2.3980(5)	2.5675(8)

(Path B) monitored by 1 H NMR is in the order 1a < 1b < 1c, 8 reflecting trans effect of X. Interestingly the nature of the signal deformation in the 19 F NMR depends on the type of halide ligand (Figure 2). On gradual elevation of the temperature both outer signals assigned to the basal/apical chelate (ap and c-2) of 1a broadened first and the central two signals assigned to the basal/basal chelate (r and c-I) broadened next, in spite of the larger signal separation for the basal/apical chelate. These results suggest that k_A should be larger than k_B for 1a. On the other hand the four CF_3 signals of 1c changed to two signals at equal rates; the lower field signal due to the exchange of 0^b and 0^d , and the other to that of 0^a and 0^c (Path B). For 1c these two signals broadened again at 40 °C (Path A). The dynamic 1^{19} F NMR spectra of 1b behaved like those of 1c. These results indicate that k_B is much larger than k_A for the bromide and iodide

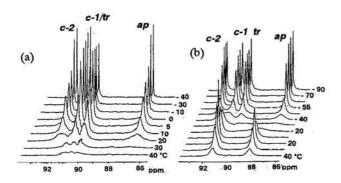


Figure 2. Variable-temperature ¹⁹F NMR spectra of (a) [Pt(hfac)₂Cl]⁻ 1a and (b) [Pt(hfac)₂I]⁻ 1c in CD₂Cl₂ (tentative assignment).

Path A
$$\begin{bmatrix}
F_3C & O^2 & O^3 & CF_3 \\
F_3C & O^2 & O^3 & CF_3
\end{bmatrix}$$
Path B
$$\begin{bmatrix}
F_3C & O^2 & O^3 & CF_3 \\
F_3C & O^3 & CF_3
\end{bmatrix}$$
Path B
$$\begin{bmatrix}
F_3C & O^2 & O^3 & CF_3 \\
F_3C & O^3 & CF_3
\end{bmatrix}$$
Scheme 1.

complexes, being similar to the phosphine analogue.³ From a rough estimate, the rate of oscillating motion of one hfac (Path A) is in the order 1a > 1c.¹⁰ It is very significant that the reverse of the trans effect was found as a "cis" effect for the halide ligand, whether the effect is not large. Path A and Path B are good models for the self-exchange reaction of oxygen donor ligand at the cis and trans positions, respectively, to the X- ligand in square planar Pt(II) complex, for example, $[PtX(H_2O)_3]^+$ in aqueous solution Moreover a successive process of Path A and Path B brings cis-trans isomerization. It would be predicted that the rate of isomerization is not sensitive to the kind of halide ion. ¹¹

S.O. is gratful to the Ministry of Education, Science and Culture for Grant-in-aid for Scientific Research, No. 08454210.

References and Notes

G. Aullon and S. Alvarez, Inorg. Chem., 35, 3137 (1996).

- A. R. Siedle, R. A. Newmark, and L. Pignolet, J. Am. Chem. Soc., 104, 6584 (1982).
- 3 S. Okeya, T. Miyamoto, S. Ooi. Y. Nakamura, and S. Kawaguchi, B. C. S. Jpn., 57, 395 (1984).
 - Satisfactory analytical data were obtained for 1a, 1b, and 1c. 1a: IR (KBr); 1696s, 1588s, 1563vs, 1532s (ν(CO)). ¹H NMR (CD₂Cl₂, -40 °C, 90 MHz); δ 5.91 (1H), 6.20 (1H, J(Pt-H) = 11 Hz). ¹⁹F NMR (CD₂Cl₂, -40 °C, 84 MHz, Ref; External C₆F₆); δ 86.76, 90.28 (J(Pt-F) = 13 Hz), 90.84 (J(Pt-F) = 13 Hz), 91.73 (J(Pt-F) = 6 Hz). 1b: IR; 1684s, 1587s, 1559vs, 1522s (ν(CO)). ¹H NMR (CD₂Cl₂, -40 °C); δ 5.89 (1H), 6.20 (1H). ¹⁹F NMR (CD₂Cl₂, -60 °C); δ 86.86, 90.36 (J(Pt-F) = 12 Hz), 90.94 (J(Pt-F) = 13 Hz), 91.98. 1c: IR; 1689s, 1593s, 1567vs, 1522s (ν(CO)). ¹H NMR (CD₂Cl₂, -90 °C); δ 5.90 (s, 1H), 6.28 (s, 1H). ¹⁹F NMR (CD₂Cl₂, -90 °C); δ 87.05, 90.41, 91.11, 92.40.
- 1b: C₃₄H₂₂F₁₂BrPPtO₄, F, W. = 1028.5, triclinic, $P\overline{1}$, a = 11.842(2) Å, b = 14.172(4) Å, c = 11.858(3) Å, α = 113.10(3)°, β = 101.78(4)°, γ = 81.22(2)°, V = 1786(1) Å³, Z = 2, D_c = 1.912 g cm⁻³, μ (MoK α) = 51.79 cm⁻¹, R = 0.036 for 8292 reflections (I>4.0σ(I)). 1c: C₃₄H₂₂F₁₂IPPtO₄, F.W. = 1075.5, triclinic, $P\overline{1}$, a = 11.747(3) Å, b = 14.128(3) Å, c = 11.557(3) Å, α = 102.85(2)°, β = 103.44(1)°, γ = 85.99(2)°, V = 1818.4(8) Å³, Z = 2, D_c = 1.964 g cm⁻³, μ (MoK α) = 48.34 cm⁻¹, R = 0.056 for 7823 reflections (I >4.0σ(I)). Diffraction data were collected on a Rigaku RAXIS-CS imaging plate area detector with graphite-monochromated MoK α radiation at -190°C. All calculations were performed using the teXsan Crystallographic Software package of Molecular Structure Corporation. Though 1a was also subjected to the X-ray analysis, satisfactory result has not been obtained so far due to the poor quality of the crystal.
- 6 Synthesis of 2a; a CH₂Cl₂ solution of [Pt(hfac)₂] was added to a CH₂Cl₂ solution of two equivalents of [AsPh₄]Cl at around -30 °C. Et₂O and n-pentane were added to the resulting mixture to deposit an orange precipitate, which was filtered and washed with Et₂O (Yield; 72%). Anal. Found: C, 40.45; H, 2.29%. Calcd for C₃₄H₂₂ClF₆AsPt: C, 39.73; H, 2.16%. IR (KBr); 1687s, 1591s, 1558vs, 1521s (v(CO)). ¹H NMR (CDCl₃, -10 °C, 90 MHz); δ 6.18 (1H, hfac-O,O'), 7.03 (1H, hfac-O). ¹⁹F NMR (CDCl₃, -40 °C, 84 MHz); δ 89.9, 93.2(J(Pt-F) = 10 Hz), 93.6, 96.9 (J(Pt-F) = 15 Hz).
- Synthesis of 3 (X = Cl); [Pt(hfac)₂] and two equivalents of [PPh₄]Cl were dissolved in CH₂Cl₂ at room temperature. n-Pentane was added to this solution, which was left in a refrigerator. The resulting brown microcrystals were filtered off and washed with Et₂O and H₂O (Yield; 81%). The bromide and iodide analogues were also prepared. Anal. Found: C, 54.46; H, 3.36%. Calcd for 3·[PPh₄]hfac (C₅₈H₄₂O₄P₂Cl₂F₁₂Pt): C, 54.84; H, 3.33%. IR (KBr); 1669vs (hfac⁻), 1622s, 1586m, 1552vs, 1526s, 1510m (v(CO)). ¹H NMR (CDCl₃, 90 MHz); δ 5.46 (hfac⁻), 5.96 (hfac-O,O⁻). ¹⁹F NMR (CDCl₃, 84 MHz); δ 90.65 (hfac⁻), 92.89 (hfac-O,O⁻).
- 8 Coalescence temperatures were ca. 30 for 1a, 0 for 1b and -50 °C for 1c, respectively(k_B ≈ 30 s⁻¹).
- 9 k_A value was calculated to be four times higher than k_B for 1a. (For example; k_A ≈ 40 s⁻¹ and k_B ≈ 11 s⁻¹ at 5 °C)
- Same rate constant(k_A ≈ 30 s⁻¹) was evaluated for 1a at 0 °C and for 1e at 20 °C.
- 11 The rate-determining step of cis-trans isomerization is Path B for 1a, and the rate is similar in magnitude to that (Path A) of 1e.